

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

FAIRCHILD

SEMICONDUCTOR

NC7NZ34 TinyLogic® UHS Triple Buffer

General Description

The NC7NZ34 is a triple buffer from Fairchild's Ultra High Speed Series of TinyLogic® in the space saving US8 package. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} range. The inputs and outputs are high impedance when V_{CC} is 0V. Inputs tolerate voltages up to 7V independent of V_{CC} operating voltage.

Features

- Space saving US8 surface mount package
- MicroPak[™] Pb-Free leadless package
- Ultra High Speed: t_{PD} 2.4 ns Typ into 50 pF at 5V V_{CC}

July 2001

Revised November 2005

- High Output Drive: ±24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range: 1.65V to 5.5V
- Power down high impedance inputs/outputs
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Proprietary noise/EMI reduction circuitry implemented

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description		Supplied As			
NC7NZ34K8X	MAB08A	NZ34	8-Lead US8, JEDE	3k Units on Tape and Ree				
NC7NZ34L8X	MAC08A	P9	Pb-Free 8-Lead MicroPak, 1.6 mm Wide		5k Units on Tape and Ree			
Pb-Free package per JEDEC J-STD-020B.				Connection Diagrams				
Pin Desc	1A (1) 2A (3) 3A (6)	(5)	- 17 - 27 - 27	Top View				
	n Names		cription	Pin One Orientatio	n Diagram			
A	1, A ₂ , A ₃		a Inputs	, aac				
Y	₁ , Y ₂ , Y ₃	C	Dutput					
Function	Table			Pin One				
i unotion		$\mathbf{Y} = \mathbf{A}$		AAA represents Product Code Top Mark - see ordering code Note: Orientation of Top Mark determines Pin One location. Read the top				
				product code mark left to right, Pin One is t	•			
	Input A		Output Y	Pad Assignments for	or MicroPak			
	L		L	1A 3Y 7 6	2A 5			
	н		H					
H = HIGH Logic Le L = LOW Logic Lev				Vcc 8	4 GND			
				(Top Thru V	iew)			
			Semiconductor Corporatio	on. MicroPak™ is a trademark of Fairchild Ser				

© 2005 Fairchild Semiconductor Corporation DS500494

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Voltage (V _{IN})	-0.5V to +7.0V
DC Output Voltage (V _{OUT})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
V _{IN} < 0V	–50 mA
DC Output Diode Current (I _{OK})	
V _{OUT} < 0V	–50 mA
DC Output Source/Sink Current (I _{OUT})	±50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±100 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	250 mW

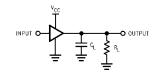
Recommended Operating Conditions (Note 2) Supply Voltage Operating (V_{CC}) 1.65V to 5.5V 1.5V to 5.5V Data Retention Input Voltage (VIN) 0V to 5.5V Output Voltage (V_{OUT}) 0V to $V_{\mbox{CC}}$ Input Rise and Fall Time (t_r, t_f) $V_{CC}=1.8V,\,2.5V\pm0.2V$ 0 to 20 ns/V $V_{CC}=3.3V\pm0.3V$ 0 to 10 ns/V $V_{CC}=5.5V\pm0.5V$ 0 to 5 ns/V Operating Temperature (T_A) $-40^{\circ}C$ to $+85^{\circ}C$ Thermal Resistance (θ_{JA}) 250°C/W

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$			$T_A = -40^\circ C$ to $+85^\circ C$		Units	Conditions		
	Farameter	(V)	Min Typ		Max	Min	Max	Units	0	nunions
VIH	HIGH Level Control	1.8 ± 0.15	0.75 V _{CC}			0.75 V _{CC}		v		
	Input Voltage	2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
VIL	LOW Level Control	1.8 ± 0.15			0.25 V _{CC}		0.25 V _{CC}	v		
	Input Voltage	2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
V _{ОН}	HIGH Level Control	1.65	1.55	1.65		1.55				
	Output Voltage	2.3	2.2	2.3		2.2				I = 100 m
		3.0	2.9	3.0		2.9				I _{OH} = -100 μ.
		4.5	4.4	4.5		4.4		v	V _{IN} = V _{IH}	
		1.65	1.29	1.52		1.29				$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.14		1.9				$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.75		2.4				$I_{OH} = -16 \text{ mA}$
		3.0	2.3	2.62		2.3				$I_{OH} = -24 \text{ mA}$
		4.5	3.8	4.13		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Control	1.65		0.0	0.1		0.1			
	Output Voltage	2.3		0.0	0.1		0.1			I _{OL} = 100 μA
		3.0		0.0	0.1		0.1			ιος = 100 μΑ
		4.5		0.0	0.1		0.1			
		1.65		0.08	0.24		0.24	V	$V_{IN}=V_{IL}$	$I_{OL} = 4 \text{ mA}$
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$
		3.0		0.16	0.4		0.4			$I_{OL} = 16 \text{ mA}$
		3.0		0.24	0.55		0.55			$I_{OL} = 24 \text{ mA}$
		4.5		0.25	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±0.1		±1.0	μΑ	$0 \le V_{IN} \le 5$.5V
I _{OFF}	Power Off Leakage Current	0.0			1.0		10	μΑ	V _{IN} or V _{OU}	_T = 5.5V
Icc	Quiescent Supply Current	1.65 to 5.5			1.0		10	μΑ	V _{IN} = 5.5V,	GND


Symbol	Parameter	V _{cc}	T _A = +25°C			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Figure
		(V)	Min	Тур	Max	Min	Max	Units	conditions	Number
t _{PLH}	Propagation Delay	1.8 ± 0.15	1.8	4.6	8.0	1.8	8.8			
t _{PHL}		2.5 ± 0.2	1.0	3.0	5.2	1.0	5.8	ns	$C_{L} = 15 \text{ pF},$	Figures
		3.3 ± 0.3	0.8	2.3	3.6	0.8	4.0	115	$C_L = 15 \text{ pF},$ $R_L = 1 \text{ M}\Omega$	Ĩ, 3
		5.0 ± 0.5	0.5	1.8	2.9	0.5	3.2			
t _{PLH}	Propagation Delay	3.3 ± 0.3	1.2	3.0	4.6	1.2	5.1	ns	$C_{L} = 50 \text{ pF},$	Figures
t _{PHL}		5.0 ± 0.5	0.8	2.4	3.8	0.8	4.2	115	$R_L = 500\Omega$	ĭ, 3
CIN	Input Capacitance	0		2.5				pF		
C _{PD}	Power Dissipation	3.3		9				۳ ۲	(1) ()	Figure 2
	Capacitance	5.0		11				pF	(Note 3)	Figure 2

loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC} static).$

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	T _A = 25°C Typical	Unit
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 pF, V_{IH} = 5.0V, V_{IL} = 0V$	5.0	0.8	V
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 pF, V_{IH} = 5.0V, V_{IL} = 0V$	5.0	-0.8	V

AC Loading and Waveforms

 C_L includes load and stray capacitance Input PRR = 1.0 MHz; t_W = 500 ns

FIGURE 1. AC Test Circuit

 $\label{eq:prod} \begin{array}{l} \mbox{Input} = AC \mbox{ Waveform; } t_r = t_f = 1.8 \mbox{ ns;} \\ \mbox{PRR} = 10 \mbox{ MHz; } \mbox{Duty Cycle} = 50\% \\ \hline \mbox{FIGURE 2. } I_{CCD} \mbox{ Test Circuit} \end{array}$

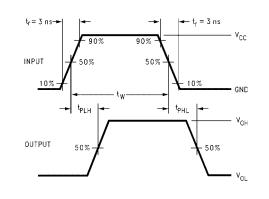
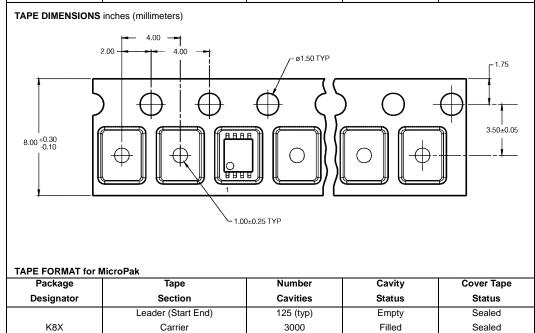


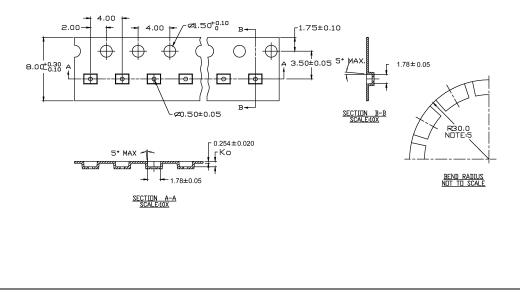
FIGURE 3. AC Waveforms

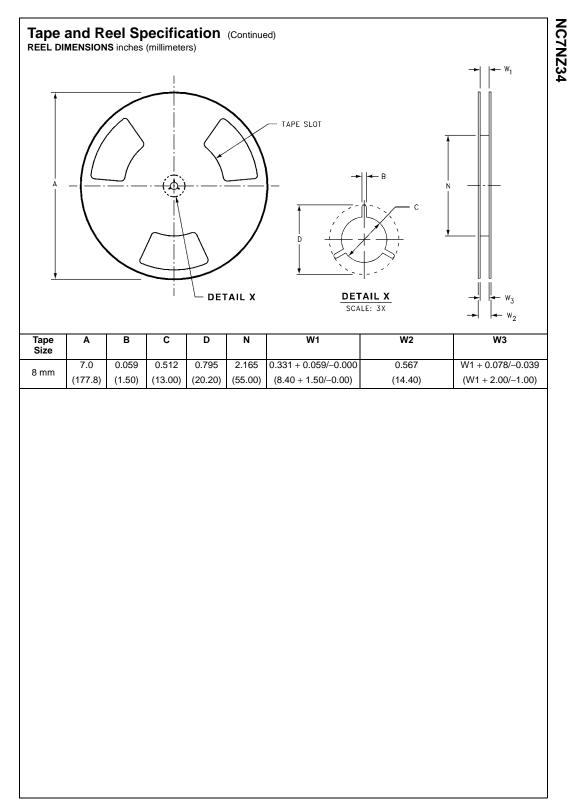

www.fairchildsemi.com

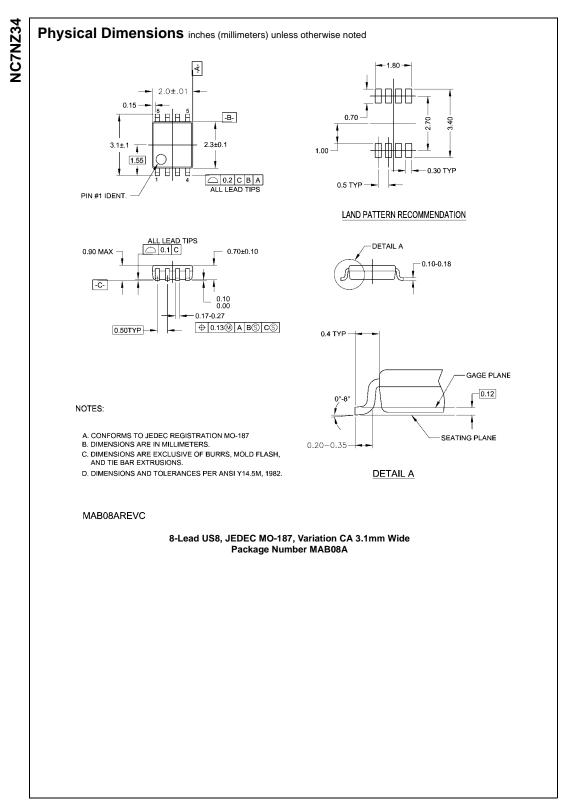
NC7NZ34

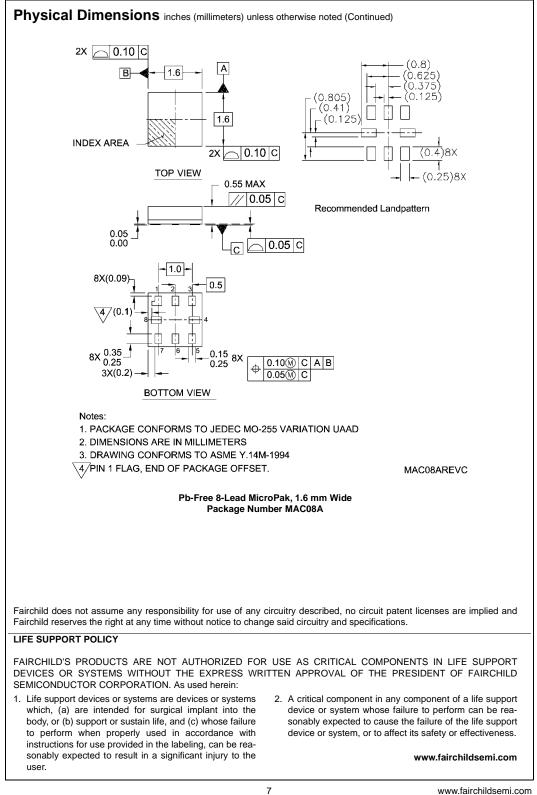
Tape and Reel Specification

TAPE FORMAT for	JS8			
Package	Таре	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
K8X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed


75 (typ)


Sealed


Empty


TAPE DIMENSIONS inches (millimeters)

Trailer (Hub End)

NC7NZ34 TinyLogic® UHS Triple Buffer

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC